概述
陆表蒸散(Latent Heat Flux, LE)是指陆表土壤蒸发、植被截留蒸发以及植被蒸腾过程中由于水汽相变(水从液态到气态)向大气传输的热量通量(Monteith, 1965; Priestley and Taylor, 1972; Kalma, et al. 2008; Liang, et al. 2010; Wang and Dickinson, 2012)。蒸散的单位是W/m2,在水文学和微气象学中通常用土壤蒸发和植被蒸腾过程中传输到大气中的水分来代替蒸散,称为蒸散(或者蒸散发,单位为mm)。陆表蒸散是水圈、大气圈和生物圈水分和能量交换的主要过程参量,是陆地表层能量循环、水循环和碳循环中最难估算的分量,长期以来是农业、水文预报、天气预报以及气候过程模拟中必不可少的关键变量。
与点的蒸散估算相对应,遥感具有明显的区域性优势,这主要体现在它(1)高度融合了地表空间异质性(Zhang, et al. 2003; Liang et al., 2004; 李小文等, 1998; 徐冠华, 2000; 张仁华等, 2002; 刘绍民等, 2004);(2)可以生产高空间分辨率的产品(Mu, 2007, 2011)。 尽管有些学者怀疑遥感的估算精度,但是遥感估算地表蒸散已经成为一种常用的方法(Shuttleworth 1991; Hall, et al. 1992)。然而,光学遥感受到云、气溶胶、天气等状况影响使得其地表信息受到严重影响(Dente, et al. 2008; Crow, et al. 2008),因此,遥感产品与气象数据(再分析等资料)或者地面数据的结合来估算地表蒸散受到广泛关注(Norman, et al. 1995; Anderson, et al. 1997; Cleugh, et al. 2007; Mu, et al. 2007, 2011; Wang and Liang, 2008; Wang, et al. 2007, 2010a,b; Jung, et al. 2010; Yao, et al. 2013; Yao et al., 2017)。因此,高精度陆表蒸散的估算研究对于探索全球能量循环、区域水循环和水资源管理提供有价值的指导意义。
遥感方法计算地表蒸散是一种间接的测量方法,是将遥感数据反演的地表参数以及大气参数输入模型中,计算得到实际的蒸散,其过程较为复杂,不确定性较大。遥感估算蒸散的理论基础是地表能量平衡方程,大气边界层理论以及土壤-植被-大气连续体(SPAC)内的水热传输规律等。过去三十年里,许多学者利用遥感数据、再分析资料以及地面观测数据,设计了多种蒸散估算方法,但是高分辨率产品较少。下面我们从常见的高分辨率蒸散产品和蒸散的遥感算法两个方面介绍国内外研究现状。
目前全球的蒸散产品类型很多,主要包括卫星产品、再分析资料、陆面模型模拟、水文模型模拟以及数据同化数据集等多种类型,但是基于Landsat的高分辨率全球蒸散产品较少, 最著名的是美国FAO的NASA-METERIC(Mapping EvapoTranspiration with high-Resolution and Internalized Calibration)产品,采用的传统的METRIC算法和Google Earth Engine平台计算得到,空间分辨率30米,时间跨度是2011年至今,产品说明下载地址为https://c3.nasa.gov /water/static/media/other/Day1_S3-3_Allen.pdf,产品下载地址为http://eeflux-level1.appspot.com。但该产品只针对晴空数据有产品,而且精度不确定性都很大。除METRIC产品(空间分辨率30m)外,几乎所有的其它全球蒸散产品空间分辨率较低,分辨率从1公里到上几十公里不等。Asiaflux观测网数据验证也显示了Landsat产品精度不够理想。
传统的遥感估算地表蒸散的方法可以分为基于地表能量平衡的物理模型、经验统计算法、Penman-Monteith算法、遥感三角形方法和数据同化方法五类。
(1)基于地表能量平衡的物理模型
基于地表能量平衡的物理模型从空气动力学角度考虑了土壤、植被和大气阻抗,考虑了植被顶层温度与空气温度的温差(Brown & Rosenberg, 1973; 邱国玉等, 2006a,b)。物理模型对于植被顶层温度与空气温度温差的要求较高,通常遥感方法很难获得这一参数,往往这一参数的估算误差会直接影响实际蒸散的数值大小,单一的地表这一参数值会较小,而对于复杂的异质地表这一参数通常会较大(Choudhury, et al. 1986; Li, et al. 2009)。常用的模型为单层和双层模型,其中,单层模型被提出并用来估算地表实际蒸散与地表蒸散状况(Dickinson,1984; Sellers, 1996),它假设地表为均一性的,方便的将遥感反演数据与气象参数联系起来,成为非常常用的一种地表蒸散估算方法。物理模型具有较好的物理机制,然而,有些参数(如地表阻抗、地表粗糙度等)很难获取,在实际应用和业务化操作中存在很大的困难。
(2)经验统计算法
遥感经验模型不涉及到湍流交换机理和能量平衡感热通量的准确计算,直接对地表蒸散最为敏感的气象或下垫面参数反演进行蒸散估算。当然经验模型里也有物理机制的成分。这种方法通常以假设显热通量、蒸散和地表净辐射与土壤热通量之差之间存在较好的关系,通过遥感可以估算瞬时的地表蒸散,然后根据卫星过境的时刻与蒸散之间的变化正弦或者余弦函数来推算每天的地表蒸散(Brown & Rosenberg, 1973; 高彦春和龙笛, 2008; Li, et al. 2009)。Seguin & Itier (1983) 提出利用热红外遥感数据反演的地表温度估算日蒸散的方法,并作了进一步的分析与解释,该方法的估算时间尺度上的蒸散精度误差为20-30%,在很多区域上是可以接受的。尽管经验统计算法不需要大量的气象观测数据,仅仅通过遥感反演获得的参数,如地表温度、地表反照率等就能估算像元的蒸散,模型通常简单、实用。但是,高精度经验模型的建立比较困难,不仅因需要遥感影像范围内大气状况相对稳定,且差异不大,并存在极干和极湿的区域。
(3)Penman-Monteith算法
Penman-Monteith算法是目前估算地表蒸散应用最为广泛的一种方法。早在1948年Peman根据热量平衡和湍流扩散原理,根据波文比提出来计算水面蒸发的基本公式。后由Monteith(1965)将冠层阻抗引入彭曼公式,形成著名的Peman-Monteith公式,彭曼公式考虑了风速、水汽压、温度和日照等因素。近年来,Penman-Monteith被国内外许多学者利用遥感把空气阻抗和地表阻抗进行参数化,提高该模型的可操作性,Mu, et al.(2007, 2011)针对不同的植被类型,分别采用LAI、最低空气温度限制因子和水汽压限制因子对Cleugh方法进行了简化,成功地估算了MODIS数据的蒸散量,后来这种算法成为MODIS蒸散的产品的官方算法。彭曼类模型在应用到区域尺度时,还需要精确模拟参考高度温度场、风速场和湿度场,而气象模型往往由于空间分辨率较低而不能满足蒸散发估算的精度要求。
(4)遥感三角形方法
遥感三角形方法最早用于土壤水分反演和地表干旱监测。Lambin, et al.(1996)认为植被指数(NDVI)与陆面温度(LST)的空间变异常存在三角形关系,三角空间中存在干边和湿边。Jiang & Islam(2001)利用植被指数-地表温度光谱特征空间中的三角形关系,结合遥感反演的产品,逐像元估算了Priestley-Taylor系数,开展了Priestley-Taylor在美国南大平原中蒸散的计算,并对结果进一步分析验证,为该方法在实际中的应用提供了较好的应用实例。尽管这种方法为遥感提供了一种估算蒸散的新策略,但是区域的复杂性和“干”、“湿”边界也存在很大不确定性。
(5) 数据同化方法
数据同化方法估算地表蒸散是融合多源数据(包括遥感数据,气象数据,常规观测数据等),实现蒸散变量的最优估计。它将陆面模型拟合结果与地面、遥感观测数据相融合,以不断更新陆面模型状态变量与参数,从而提高地表辐射通量(包括蒸散和显热通量)的模拟与预报精度。遥感数据同化方法估算地表蒸散过程中,遥感数据反演的LST作为输入参数用来同化点的数据进入地表能量辐射系统中,然后通过地表观测数据进行调控。比如:Courault,et al. (2005) ]利用空间分辨率10 km到几百公里的遥感数据与点的SWAT(Soil and Water Assessment Tool)模型进行同化,通过获取有效的地表参数得到了理想的蒸散。Caparrini, et al. (2004) 结合ISLSCP数据对同化结果进行了验证,结果表明:显热和蒸散的均方根误差分别为78和50W/m2,能够满足应用需求。
总体而言,各种算法都存在自身的优缺点,而且各种产品差异很大,而且单一的算法都存在很大的不确定性,多种算法集合进行蒸散估算研究较少。因此,如何开展多算法集合,提高遥感蒸散产品的反演精度是提高全球蒸散产品研究水平的关键。
产品信息
ATBD
参考文献:
- Anderson, M. C., J. M. Norman, G. R. Diak, W. P. Kustas, and J. R. Mecikalski (1997), A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing, Remote Sens. Environ., 60(2), 195-216, doi:10.1016/S0034-4257(96)00215-5.
- Angus, D. E., and P. J. Watts (1984), Evapotranspiration-How good is the Bowen ratio method?, Agric. Water Manage., 8(1–3), 133–150, doi:10.1016/0378-3774(84)90050-7.
- Baldocchi, D., et al. (2001), FLUXNET: A new tool to study the temporal and spatial variability of ecosystem scale carbon dioxide, water vapor, and energy flux densities, Bull. Am. Meteorol. Soc., 82(11), 2415–2434, doi:10.1175/1520-0477(2001)082<2 415: FANTTS>2.3.CO;2.
- Bowen, I. S. (1926), The ratio of heat losses by conduction and by evaporation from any water surface, Phys. Rev., 27(6), 779, doi:10.1103/PhysRev.27.779.
- Brown, K.W. and Rosenberg, H.T. A resistance model to predict evapotranspiration and its application to a Sugar Beet field, Agronomy Journal, 1973, 66: 450-454.
- Caparrini F, Castelli F, Entekhabi D. Mapping of land-atmosphere heat fluxes and surface parameters with remote sensing data[J]. Boundary-layer Meteorology, 2003, 107:605-633.
- Caparrini F, Castelli F, Entekhabi D. Estimation of surface turbulent fluxes through assimilation of radiometric surface temperature sequences[J]. Journal of Hydrometeorology, 2004, 5:145-159.
- Carlson, T.N. and Buffum, M.T. On estimating total daily evapotranspiration from remote sensing surface temperature measurements. Remote Sensing of Environment, 1989, 29: 197-207.
- Chen et al. 2014. Comparison of satellite-based evapotranspiration models over terrestrial ecosystems in China, RSE, 140, 279–293.
- Choudhury, B.J., et al. An analysis of infrared temperature observations over wheat and calculation of latent heat flux. Agricultural and Forest Meteorology, 1986, 37: 75-88.
- Cleugh, H. A., R. Leuning, Q. Mu, and S. W. Running (2007), Regional evaporation estimates from flux tower and MODIS satellite data, Remote Sens. Environ., 106(3), 285–304, doi:10.1016/j.rse.2006.07.007.
- Courault D, Seguin B, Olioso A. Review on estimation of evapotranspiration from remote sensing data: from empirical to numerical modelling approaches[J]. Irrigation and Drainage Systems, 2005, 19:223-249.
- Crow, W.T., Kustas, W.P. and Prueger, J.H. Monitoring root-zoon soil moisture through the assimilation of a thermal remote sensing-based soil moisture proxy into a water balance model. Remote sensing of environment, 2008, 112: 1268- 1281.
- Dente, L., Satalino, G., Mattia, F.and Rinaldi, M. Assimilation of leaf area index derided from ASAR and MERIS data into CERES-Wheat model to map wheat yield. Remote sensing of environment, 2008, 112:1395-1407.
- Dickson, R.E. Modeling evapotranspiration for three-dimensional global climate models. In: J E. Hanson T. Takahashi (Eds.), Climate Processes and Climate Variability. Am. Geophys. Union, 1984, 58-97.
- Dolman, A.J. A multiple-source land surface energy balance model for use in general circulation models. Agricultural and Forest Meteorology, 1993, 65: 21-45.
- Duan Q., Phillips T.J. (2010) Bayesian estimation of local signal and noise in multimodel simulations of climate change. J. Geophys. Res. 115:D18123. DOI: 10.1029/2009jd013654.
- Duan Q., Ajami N.K., Gao X., Sorooshian S. (2007) Multi-model ensemble hydrologic prediction using Bayesian model averaging. Advances in Water Resources 30:1371-1386.
- Fisher J B, Tu K P, Baldocchi D D. Global estimates of the land-atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites[J]. Remote Sensing of Environment, 2008, 112: 901-919.
- Foken, T. (2008), The energy balance closure problem: An overview, Ecol. Appl., 18(6), 1351–1367, doi:10.1890/06-0922.1.
- French,A.N., Jacob, F., Anderson, M.C., Kustas, W.P., Timmermans, W. and Gieske, A . Surface energy fluxes with the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) at the Iowa 2002 SMACEX site (USA). Remote Sensing of Environment, 2005, 99:55-65, doi:10.1016/j.rse. 2005.05.015.
- Garratt, J. R., and B. B. Hicks (1990), Micrometeorological and PBL experiments in Australia, Boundary Layer Meteorol., 50(1–4), 11–29, doi:10.1007/BF00120516.
- Hall, F. G., Huemmrich, R. H., Goetz, S.J., Sellers, P.J. and Nickerson, J.E. Satellite remote sensing of surface energy balance: success, failures and unresolved issues in FIFE. Journal of Geophysical Research, 1992, 97:19061- 19090.
- Hoeting J.A., Madigan D., Raftery A.E., Volinsky C.T. (1999) Bayesian Model Averaging: A Tutorial. Statistical Science 14:382-417.
- Holmes, J. W. (1984), Measuring evapotranspiration by hydrological methods, Agric. Water Manage., 8(1–3), 29–40, doi:10.1016/ 0378-3774(84)90044-1.
- Houghton J.T.e.a. (2001) (Ed.)^(Eds.) Intergovernmental Panel on Climate Change (IPCC), Climate Change 2001: The Scientific Basis. Contribution of Working Group Ito the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press, Cambridge, U. K. pp. Pages.
- Huete, A., K. Didan, T. Miura, E.P. Rodriguez, X. Gao, and L.G. Ferreira (2002), Overview of the radiometric and biophysical performance of the MODIS vegetation indices, Remote Sens. Environ., 83, 195-213.
- Jackson, R. D., Slaler, P. N. and Pinter, P.J. Discrimination of growth and water stress in wheat by various Vegetation indices through clear and turbid atmosphere. Remote Sensing of Environment, 1983,3 :187-208.
- Jia ZZ, Liu SM, Xu ZW, Chen YJ, Zhu MJ. Validation of remotely sensed evapotranspiration over the Hai River Basin, China. Journal of Geophysical Research, 2012, 117, D13113, doi: 10.1029/2011JD017037.
- Jones A S, Guch I C, VonderHaar T H. Data assimilation of satellite derived heating rates as proxy surface wetness data into a regional atmospheric mesoscale model. Part I: methodology[J]. Monthly Weather Review, 1998, 126:634-645.
- Jung, M., et al. (2010), Recent decline in the global land evapotranspiration trend due to limited moisture supply, Nature., 467(7318), 951-954, doi:10.1038/nature 09396.
- Kalma, J.D. and Calder, I. R. Land surface processes in large scale hydrology. World Meteorological Organization, Geneva, Switzerland, Operational Hydrology Report, 1994, 40:60.
- Kalma, J., T. McVicar, and M. McCabe (2008), Estimating Land Surface Evaporation: A Review of Methods Using Remotely Sensed Surface Temperature Data accomplished, Surv. Geophys., 29, 421-469, doi:10.1007/s10712-008-9037-z.
- Kim, H., K. Hwang, Q. Mu, S. Lee, and M. Choi (2012), Validation of MODIS 16 global terrestrial evapotranspiration products in various climates and land cover types in Asia, KSCE J. Civil Eng., 16(2): 229-238.
- Liang, S., A.H. Strahler and C.W. Walthall (1999), Retrieval of land surface albedo from satellite observations: A simulation study, J. Appl. Meteorol., 38, 712-725.
- Liang, S., K. Wang, X. Zhang, and M. Wild (2010), Review on estimation of land surface radiation and energy budgets from ground measurements, remote sensing and model simulations, IEEE J. Selec. Top. Appl. Earth Obs. Remote Sens., 3(3), 225-240, doi:10.1109/JSTARS.2010.2048556.
- Liang, S. L., Li, X.W., &Wang, J.D. (2012). Advanced remote sensing: Terrestrial information extraction and applications. UK: Academic Press, 506.
- Liang, S. Quantitative Remote Sensing of Land Surfaces, 534 pp., John Wiley, Hoboken, N. J. 2004.
- Liu SM, Xu ZW, Zhu ZL, Jia ZZ, Zhu MJ. Measurements of evapotranspiration from eddy-covariance systems and large aperture scintillometers in the Hai River Basin, China. Journal of Hydrology, 2013, 487, 24-38.
- 邱国玉, 吴晓, 王帅等. 三温模型-基于表面温度测算蒸散和评价环境质量的方法 IV.植被蒸腾扩散系数[J]. 植物生态学报, 2006a, 30(5): 852-860.
- 辛晓洲,柳钦火,田国良等. 利用土壤水分特征点组分温差假设模拟地表蒸散[J]. 北京师范大学学报(自然科学版), 2007, 43(3): 221-227.
- 徐冠华.论热红外遥感中的基础研究[J]. 中国科学(E辑)增刊, 2000, 30:1-5.
- 王开存. 青藏高原地表特征地基观测与遥感研究[D]. 北京大学图书馆:北京大学博士论文, 2004, 77-86.
产品详情
图层名称 |
描述 |
单位 |
数据类型 |
分辨率 |
无效值 |
有效范围 |
比例因子 |
et |
地表蒸散发 |
W/m2 |
int16 |
30m |
-9999 |
-4000-4000 |
0.1 |